Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 181
Filtrar
1.
Ecol Evol ; 14(4): e11282, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38665891

RESUMO

The cryptic and aquatic life histories of sea turtles have made them a challenging group to directly observe, leaving significant knowledge gaps regarding social behavior and fine-scale elements of habitat use. Using a custom-designed animal-borne camera, we observed previously undocumented behaviors by green turtles (Chelonia mydas) at a foraging area in San Diego Bay, a highly urbanized ecosystem in California, USA. We deployed a suction-cup-attached pop-off camera (manufactured by Customized Animal Tracking Solutions) on 11 turtles (mean straight carapace length = 84.0 ± 11.2 cm) for between 1 and 30.8 h. Video recordings, limited to sunlit hours, provided 73 h of total observation time between May 2022 and June 2023. We observed 32 conspecific interactions; we classified 18 as active, entailing clear social behaviors, as compared with 14 passive interactions representing brief, chance encounters. There was no evidence for agonistic interactions. The camera additionally revealed that green turtles consistently use metal structures within urban San Diego Bay. In seven instances, turtles exhibited rubbing behavior against metal structures, and we observed two examples of turtles congregating at these structures. High rates of intraspecific interaction exhibited relatively consistently among individuals provide a compelling case for sociality for green turtles in San Diego Bay, adding to a growing research base updating their historical label of "non-social." The frequent use of metal structures by the population, in particular the rubbing of exposed skin, has implications for behavioral adaptations to urban environments. Our study exemplifies the promise of technological advances (e.g., underwater and animal-borne cameras) for updating natural history paradigms, even for well-studied populations.

2.
Toxics ; 12(2)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38393204

RESUMO

The threat of microplastics to marine animals and habitats is increasing, which may affect sea turtle nesting grounds. The Qilianyu Islands are the largest remaining green turtle (Chelonia mydas) nesting grounds in China. Despite being far from the mainland, microplastic pollution cannot be ignored. In this study, the level of microplastic pollution in surface sediments from three different zones, namely, the bottom, intertidal, and supratidal zone, was investigated on North Island, Qilianyu Islands. The results showed that the abundance of microplastics in the supratidal zone was significantly higher than that in the bottom zone and intertidal zone (r = 3.65, p = 0.011), with the highest average abundance of microplastics located on the southwest coast of North Island. In the bottom zone, only plastic blocks (88%) and fibers (12%) were found. The main types of microplastics in the intertidal and supratidal zones were plastic blocks (48%) and foam (42%), with polyethylene (PE) (40%) and polystyrene (PS) (34%) being the predominant components. These types and components of microplastics differed from those in the surrounding seawater, but corresponding types and components were found in the plastic debris on the beach. Meanwhile, it was also observed that there were multiple instances of fragmented plastic on the beach. Thus, we suggest that the microplastics on the beach in North Island were mainly derived from the fragmentation of microplastic debris, indicating secondary microplastics. It is recommended to further strengthen the regular cleaning of plastic debris on the beach, especially the removal of small plastic debris, in order to reduce the pollution from secondary microplastics generated by the fragmentation of beach plastic debris and to better protect China's most important sea turtle nesting site in the South China Sea.

3.
Harmful Algae ; 128: 102498, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37714579

RESUMO

Algal toxins are involved in the mortality and/or illness of marine organisms via consumption of contaminated prey, or upon direct exposure to toxic cells. In this study, the presence of potentially toxic microalgal cells was investigated within the digestive tract contents of a threatened species of green turtle (Chelonia mydas). Additionally, lipophilic toxins were determined by LC-MS/MS in tissue samples (liver, stomach and/or intestine) of selected animals (n = 39 individuals) found dead-stranded in southern Brazil, from winter/2015 to autumn/2016. Thirteen potentially toxic species of microalgae (both benthic and planktonic), including seven dinoflagellates, six cyanobacteria and one diatom, were found in the digestive tract contents of green turtles. Among them, dinoflagellates belonging to the Dinophysis acuminata species complex were the most frequent (36%) and abundant (maximum average abundance of 566 cells g-1 in spring/2015). Moreover, 23% of the examined sea turtles exhibited detectable levels of the diarrhetic shellfish toxin okadaic acid (OA) in washed digestive tissues. Seven individuals accumulated OA in their intestines (max. 24.1 ng g-1) and two in the stomachs (max. 7.4 ng g-1). Toxin levels in the tissues were directly and significantly (r = 0.70, p < 0.025) associated with the cell abundance of OA-producing D. acuminata and Prorocentrum lima species complexes within the digestive contents of green turtles. Although OA concentrations were relatively low, possible chronic exposure might deteriorate general health conditions of exposed sea turtles, increasing the risk for diseases. Okadaic acid has been regarded as a tumor-promoting compound and an environmental co-factor in the incidence of fibropapillomatosis, a frequent disease in juvenile green turtles inhabiting this geographic region. Even though, only one green turtle containing OA in the digestive tissues (out of six examined) also presented fibropapillomatosis in this study. Notwithstanding, sea turtles are sentinels of ocean health. Monitoring the accumulation of algal toxins and their negative effects on these organisms contributes to conserving biodiversity and marine habitats.


Assuntos
Dinoflagelados , Microalgas , Toxinas Biológicas , Tartarugas , Animais , Brasil , Cromatografia Líquida , Ácido Okadáico , Espectrometria de Massas em Tandem , Trato Gastrointestinal , Frutos do Mar
4.
Helminthologia ; 60(2): 196-200, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37745228

RESUMO

The helminth fauna of juvenile green sea turtles (Chelonia mydas Linnaeus, 1758) is still poorly known. Herein, we study the gastrointestinal helminths of 28 juvenile green sea turtles found stranded on the north coast of Rio de Janeiro state, Brazil. All turtles were infected showing a rich helminth fauna. In total, 14802 trematodes belonging to 30 species and 5 families including Micros-caphidiidae, Plagiorchiidae, Pronocephalidae, Hapalotrematidae, and Telorchiidae were recovered. An unidentified nematode specimens was also found. The mean intensity was 536 (95% CI = 362 - 853) (range: 1 - 2831), and the species richness was 7.86 (95% CI = 6.46 - 9.21) (range: 1 - 17). The coast of Rio de Janeiro state represents new locality records for Angiodictyum posterovitellatum, Microscaphidium aberrans, M. warui, Octangium hyphalum, O. sagitta, Enodiotrema reductum and Pleurogonius laterouterus. This study confirms that the green sea turtle harbors the richest helminth fauna among sea turtle species and provides useful information on the gastrointestinal helminths of a poorly known stage in the life cycle of this endangered chelonian.

5.
J Proteomics ; 285: 104942, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37285907

RESUMO

Understanding the impacts of chemical exposure in marine wildlife is challenging, due to practical and ethical constraints that preclude traditional toxicology research on these animals. This study addressed some of these limitations by presenting an ethical and high throughput cell-based approach to elucidate molecular-level effects of contaminants on sea turtles. The experimental design addressed basic questions of cell-based toxicology, including chemical dose and exposure time. Primary green turtle skin cells were exposed to polychlorinated biphenyl (PCB) 153 and perfluorononanoic acid (PFNA) for 24 and 48 h, at three sub-lethal, environmentally relevant concentrations (1, 10 and 100 µg/L). Sequential window acquisition of all theoretical mass spectra (SWATH-MS) identified over 1000 differentially abundant proteins within the 1% false discovery rate (FDR) threshold. The 24 h exposure resulted in a greater number of differentially abundant proteins, compared to 48 h exposure, for both contaminants. However, there were no statistically significant dose-response relationships for the number of differentially synthesised proteins, nor differences in the proportion of increased vs decreased proteins between or within exposure times. Known in vivo markers of contaminant exposure, superoxide dismutase and glutathione S-transferase, were differentially abundant following exposure to PCB153 and PFNA. SIGNIFICANCE: Cell-based (in vitro) proteomics provides an ethical and high throughput approach to understanding the impacts of chemical contamination on sea turtles. Through investigating effects of chemical dose and exposure duration on unique protein abundance in vitro, this study provides an optimised framework for conducting cell-based studies in wildlife proteomics, and highlights that proteins detected in vitro could act as biomarkers of chemical exposure and effect in vivo.


Assuntos
Bifenilos Policlorados , Tartarugas , Poluentes Químicos da Água , Animais , Tartarugas/metabolismo , Bifenilos Policlorados/toxicidade , Bifenilos Policlorados/análise , Animais Selvagens , Pele/química
6.
Mar Biol ; 170(7): 83, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37251697

RESUMO

Sea turtles spend most of their life cycle in foraging grounds. Research in developmental habitats is crucial to understanding individual dynamics and to support conservation strategies. One approach to gather information in foraging grounds is the use of cost-effective and non-invasive techniques that allow public participation. The present study aimed to use photographic-identification (photo-ID) to investigate the spatio-temporal distribution of Chelonia mydas and Eretmochelys imbricata. Furthermore, we describe fibropapillomatosis occurrence. This work was carried out at subtropical rocky reefs of the Brazilian coast in Arraial do Cabo (22°57'S, 42°01'W), within a sustainable conservation unit. A total of 641 images were obtained through social media screening (n = 447), citizen science (n = 168), or intentional capture (n = 26) dated between 2006 and 2021. Additionally, 19 diving forms (between 2019 and 2021) were received from citizen scientists. All diving forms presented at least one turtle. Photo-ID identified 174 individuals of C. mydas, with 45 being resighted, while E. imbricata had 32 individuals, with 7 individuals resighted. The median interval between the first and last individual sighting was 1.7 years for C. mydas and 2.4 years for E. imbricata. Fibropapillomatosis was only observed in C. mydas, with a prevalence of 13.99% (20 of 143 individuals) and regression in 2 individuals (10.00%). Our results indicated that Arraial do Cabo is an important development area with individuals residing for at least 6 years. This study demonstrated that social media, along with photo-ID, can be useful to provide sea turtle estimates in a foraging ground using a non-invasive, low-cost method. Supplementary Information: The online version contains supplementary material available at 10.1007/s00227-023-04226-z.

7.
Mol Biol Rep ; 50(5): 4145-4154, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36877349

RESUMO

BACKGROUND: The green sea turtle, Chelonia mydas, is a migratory species with a strong natal homing behavior leading to a complex population structure worldwide. The species has suffered severe declines in local populations; it is therefore crucial to understand its population dynamics and genetic structure to adopt appropriate management policies. Here, we describe the development of 25 new microsatellite markers specific to C. mydas and suitable for these analyses. METHODS AND RESULTS: They were tested on 107 specimens from French Polynesia. An average allelic diversity of 8 alleles per locus was reported and observed heterozygosity ranged from 0.187 to 0.860. Ten loci were significantly deviant from the Hardy-Weinberg equilibrium, and 16 loci showed a moderate to high level of linkage disequilibrium (4-22%). The overall Fis was positive (0.034, p-value < 0.001), and sibship analysis revealed 12 half- or full-sibling dyads, suggesting possible inbreeding in this population. Cross-amplification tests were performed on two other marine turtle species, Caretta caretta and Eretmochelys imbricata. All loci successfully amplified on these two species, though 1 to 5 loci were monomorphic. CONCLUSION: These new markers will not only be relevant for further analyses on the population structure of the green turtle and the two other species, but they will also be invaluable for parentage studies, for which a high number of polymorphic loci are necessary. This can provide important insight into male reproductive behavior and migration, an aspect of sea turtle biology that is of critical importance for the conservation of the species.


Assuntos
Tartarugas , Animais , Masculino , Tartarugas/genética , Heterozigoto , Repetições de Microssatélites/genética , Polinésia
8.
Animals (Basel) ; 13(3)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36766296

RESUMO

Sea turtles present strategies that have allowed them to survive and reproduce. They spend most of their lives in the sea, except when they emerge as hatchlings from the nest and when the adult females return to nest. Those moments of their life cycle are vital for their reproductive success, conservation, and knowledge of their biology. This study reports the life history traits exhibited by female black sea turtles from Colola Beach, Mexico using morphometric and reproductive data obtained during 15 sampling seasons (1985-2000, n = 1500). The results indicate that nesting females have a mean body size of 85.7 cm and reach sexual maturity at 24 years old at a minimum size of 68 cm. Females deposit a mean of 69.3 eggs per clutch, and the mean fecundity was 196.4 eggs per female per season. The remigration intervals of 3 and 5 years were the most frequent registered. The life history traits found in the black sea turtle population present the lowest values reported with respect to studies conducted in the Atlantic and Indo-Pacific green turtle populations, which supports the hypothesis that this population is recovering, since morphometric and reproductive data represent young nesting turtles.

9.
Animals (Basel) ; 13(3)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36766322

RESUMO

Effective conservation of endangered species relies on the characterization of habitat use and tracking of long-term population trends, which can be especially challenging for marine species that migrate long distances and utilize a diversity of habitats throughout their lives. Since 2012, citizen science volunteers at the Aquarium of the Pacific in Long Beach, California, have been monitoring an urban population of East Pacific green sea turtles (Chelonia mydas) that resides near the mouth of the San Gabriel River (SGR) in Southern California, USA, in order to gain insights about how the population uses this area. Here, we collate and analyze nine years of citizen science data, including observed sightings collected across 10 observation stations. Our results confirm that green sea turtles are frequently present around warm water effluent from power plants, similar to research results reported for other locations in the eastern Pacific Ocean. Importantly, observational data also show notable green sea turtle activity around the outfalls for a small wetland habitat bordering the SGR, highlighting the importance of wetland ecosystems as a key habitat and foraging area for this threatened population. Finally, our results showcase the benefits of using citizen science to monitor sea turtle populations in easily accessible nearshore habitats.

10.
Animals (Basel) ; 13(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36670854

RESUMO

(1) Background: Plastic pollution is a major environmental concern confronting marine animals. Sea turtles are considered a bio-indicator of plastic pollution, but there is little information regarding plastic ingestion by turtles in the Red Sea. With large-scale development projects being built along the Saudi Arabian coast, it is important to have a baseline for plastic ingestion before construction is complete. (2) Methods: Ten deceased sea turtles (four hawksbill and six green turtles) were collected along the Saudi Arabian coastline. Necropsies were conducted, and the entire gastrointestinal tracts were extracted and the contents were passed through a 1 mm mesh sieve. (3) Results: We found that 40% of the turtles in this study had ingested plastics. Thread-like plastics were the most common plastic category, and multi-colored was the most prevalent color category. (4) Conclusions: Monitoring of the plastic ingestion by marine megafauna should be conducted as a long-term assessment of the developments' impacts. Additionally, conservation efforts should be focused on removing plastics (namely ghost nests and fishing lines) from the reefs and reducing the amount of plastic entering the sea.

11.
Ecology ; 104(2): e3902, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36310424

RESUMO

Understanding how megaherbivores incorporate habitat features into their foraging behavior is key toward understanding how herbivores shape the surrounding landscape. While the role of habitat structure has been studied within the context of predator-prey dynamics and grazing behavior in terrestrial systems, there is a limited understanding of how structure influences megaherbivore grazing in marine ecosystems. To investigate the response of megaherbivores (green turtles) to habitat features, we experimentally introduced structure at two spatial scales in a shallow seagrass meadow in The Bahamas. Turtle density increased 50-fold (to 311 turtles ha-1 ) in response to the structures, and turtles were mainly grazing and resting (low vigilance behavior). This resulted in a grazing patch exceeding the size of the experimental setup (242 m2 ), with reduced seagrass shoot density and aboveground biomass. After structure removal, turtle density decreased and vigilance increased (more browsing and shorter surfacing times), while seagrass within the patch partly recovered. Even at a small scale (9 m2 ), artificial structures altered turtle grazing behavior, resulting in grazing patches in 60% of the plots. Our results demonstrate that marine megaherbivores select habitat features as foraging sites, likely to be a predator refuge, resulting in heterogeneity in seagrass bed structure at the landscape scale.


Assuntos
Ecossistema , Tartarugas , Animais , Tartarugas/fisiologia , Biomassa , Herbivoria , Bahamas
12.
Glob Chang Biol ; 29(1): 215-230, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36330798

RESUMO

Large grazers (megaherbivores) have a profound impact on ecosystem functioning. However, how ecosystem multifunctionality is affected by changes in megaherbivore populations remains poorly understood. Understanding the total impact on ecosystem multifunctionality requires an integrative ecosystem approach, which is especially challenging to obtain in marine systems. We assessed the effects of experimentally simulated grazing intensity scenarios on ecosystem functions and multifunctionality in a tropical Caribbean seagrass ecosystem. As a model, we selected a key marine megaherbivore, the green turtle, whose ecological role is rapidly unfolding in numerous foraging areas where populations are recovering through conservation after centuries of decline, with an increase in recorded overgrazing episodes. To quantify the effects, we employed a novel integrated index of seagrass ecosystem multifunctionality based upon multiple, well-recognized measures of seagrass ecosystem functions that reflect ecosystem services. Experiments revealed that intermediate turtle grazing resulted in the highest rates of nutrient cycling and carbon storage, while sediment stabilization, decomposition rates, epifauna richness, and fish biomass are highest in the absence of turtle grazing. In contrast, intense grazing resulted in disproportionally large effects on ecosystem functions and a collapse of multifunctionality. These results imply that (i) the return of a megaherbivore can exert strong effects on coastal ecosystem functions and multifunctionality, (ii) conservation efforts that are skewed toward megaherbivores, but ignore their key drivers like predators or habitat, will likely result in overgrazing-induced loss of multifunctionality, and (iii) the multifunctionality index shows great potential as a quantitative tool to assess ecosystem performance. Considerable and rapid alterations in megaherbivore abundance (both through extinction and conservation) cause an imbalance in ecosystem functioning and substantially alter or even compromise ecosystem services that help to negate global change effects. An integrative ecosystem approach in environmental management is urgently required to protect and enhance ecosystem multifunctionality.


Assuntos
Ecossistema , Tartarugas , Animais , Biomassa , Peixes , Carbono
13.
Ecol Evol ; 12(11): e9426, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36329816

RESUMO

Regional genetic differentiation of mitochondrial lineages occurs in migratory species with natal philopatry such as sea turtles. However, early juvenile dispersal represents a key opportunity for gene flow and colonization of new regions through founder events, making it an important yet under-studied life stage. To assess connectivity among sea turtle life stages and ocean basins, we sequenced mitochondrial DNA (mtDNA) fragments from 35 juveniles sampled in the Gulf of Mexico from the rarely observed dispersal stage across three species: green turtles (Chelonia mydas; n = 30), hawksbills (Eretmochelys imbricata; n = 3), and loggerheads (Caretta caretta; n = 2). We estimated green turtle rookery contributions using a many-to-many Bayesian mixed stock analysis that incorporated dispersal probabilities based on rookery size and transport via ocean currents. We assembled a gene tree including 709 distinct mtDNA control region haplotypes from the literature for all seven extant sea turtle species to assess gaps in life-stage data across ocean basins, as well as contextualize the lineages we sampled from dispersing juveniles. Our results indicate a high likelihood that green turtles sampled in the Gulf of Mexico originated from rookeries along the coast of Mexico, with smaller contributions from Costa Rica and Suriname. The gene tree analysis yielded species-level relationships consistent with those presented previously, while intra-species relationships between lineages and ocean basins differed, particularly within loggerhead and green turtle clades. Our results highlight the lack of genetic data from juvenile sea turtles, especially the early dispersal stage, and the potential for these data to answer broader questions of connectivity and diversification across species and lineages.

14.
Arch Microbiol ; 204(11): 682, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36316591

RESUMO

This study was conducted during the 2018 nesting season at the Sugözü Beaches (Adana-Turkey) and Göksu Delta (Mersin-Turkey). Egg samples (n = 63) from loggerhead and green turtle nests (n = 43) were collected. Isolated bacteria were initially identified by phenotypic methods and then by MALDI-TOF MS. The bacterial mass spectra were analyzed using Principal Component Analysis. Bacterial isolation was performed for 55 isolates belonging to 12 genera from two major nesting sites. In Sugözü Beaches 62.2% of the bacteria species belonged to Enterobacteriaceae and in Göksu Delta 44.4% of the bacteria species belonged to Morganellaceae. Klebsiella oxytoca and Staphylococcus haemolyticus had not previously been detected in any sea turtle nests. This is the first MALDI-TOF MS study conducted for determination of bacterial variability in loggerhead turtle eggs in Turkey and serves as a reference study for the assessment of bacterial threat in sea turtle nests, enabling the establishment of suitable conservation measures and treatment processes for both sea turtles and nesting sites.


Assuntos
Tartarugas , Animais , Tartarugas/microbiologia , Comportamento de Nidação , Turquia , Bactérias/genética , Estações do Ano
15.
Microorganisms ; 10(10)2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36296266

RESUMO

The fitness of the endangered green sea turtle (Chelonia mydas) may be strongly affected by its gut microbiome, as microbes play important roles in host nutrition and health. This study aimed at establishing environmental microbial baselines that can be used to assess turtle health under altered future conditions. We characterized the microbiome associated with the gastrointestinal tract of green turtles from Guinea Bissau in different life stages and associated with their food items, using 16S rRNA metabarcoding. We found that the most abundant (% relative abundance) bacterial phyla across the gastrointestinal sections were Proteobacteria (68.1 ± 13.9% "amplicon sequence variants", ASVs), Bacteroidetes (15.1 ± 10.1%) and Firmicutes (14.7 ± 21.7%). Additionally, we found the presence of two red algae bacterial indicator ASVs (the Alphaproteobacteria Brucella pinnipedialis with 75 ± 0% and a Gammaproteobacteria identified as methanotrophic endosymbiont of Bathymodiolus, with <1%) in cloacal compartments, along with six bacterial ASVs shared only between cloacal and local environmental red algae samples. We corroborate previous results demonstrating that green turtles fed on red algae (but, to a lower extent, also seagrass and brown algae), thus, acquiring microbial components that potentially aid them digest these food items. This study is a foundation for better understanding the microbial composition of sea turtle digestive tracts.

16.
Mar Pollut Bull ; 183: 114027, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35985101

RESUMO

Green turtles foraging in coastal areas are exposed to land-based chemical pollutants that accumulate in the habitats to which they show high site fidelity. However, prior to coastal recruitment, they may be exposed to a different range of chemical threats. The recent development of species-specific in vitro bioassays for marine turtles allows for an effect-based assessment of toxicological endpoints. Blood was collected from green turtles of two life-stages, 'recent recruits' and 'coastal residents', in Hervey Bay and Moreton Bay. Organic contaminants were extracted from blood using the QuEChERS method, and cytotoxicity of the extracts measured in green turtle skin cells. Although not statistically significant, extracts from 'coastal residents' exhibited greater mean toxicity compared to 'recent recruits', possibly indicative of increased chemical accumulation from coastal habitat exposure. The bioassay results also indicated that turtles foraging in Hervey Bay are at greater risk of chemical exposure than those foraging in Moreton Bay.


Assuntos
Tartarugas , Poluentes Químicos da Água , Animais , Bioensaio , Ecossistema , Poluentes Químicos da Água/análise
17.
PeerJ ; 10: e13928, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36032942

RESUMO

Background: Anthropogenic sources can lead to the accumulation of heavy metals in marine organisms through ingestion, absorption, or inhalation. For sea turtle embryos, heavy metals can be absorbed into the egg from the incubation environment or be maternally transferred to the offspring causing neurological, reproductive, and developmental problems. Here, we report heavy metal concentrations in green turtle hatchlings from the largest rookery on the Red Sea, Ras Baridi. Methods: Deceased hatchlings were collected from two beaches near a cement factory at Ras Baridi, from which heavy metal concentrations (chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), selenium (Se), cadmium (Cd), and lead (Pb)) were measured from the liver, muscle, and residual yolk of the hatchlings. Results: Although based on a small sample of hatchlings, the data presented here provides the first measurements of heavy metals from sea turtles in the Red Sea and highlights the link between human activity and its impact on the ecology of sea turtles. In general, the heavy metal concentrations of heavy metals were not significantly different between the beach next to the cement factory and the beach downwind from the factory. However, the concentrations of heavy metals were significantly different between sampled tissues (liver, muscle, and residual yolk). Discussion: This study provides insight into current heavy metal levels in green turtle hatchlings, which can be used as bio-indicators for environmental contaminants as coastal development increases in the Red Sea. Moreover, we found a lack of standardized methodology to evaluate heavy metals in hatchling sea turtles. Future efforts should work toward creating comparable techniques for long-term heavy metal monitoring, as this is a useful determinant of anthropogenic pollution.


Assuntos
Metais Pesados , Tartarugas , Animais , Humanos , Arábia Saudita , Metais Pesados/toxicidade , Zinco , Cobre
18.
Mar Environ Res ; 179: 105666, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35667326

RESUMO

Trindade Island is the largest nesting site for green turtles Chelonia mydas in Brazil and one of the most important in the Atlantic ocean. The terrestrial crab Johngarthia lagostoma forages almost everywhere on the island, including the green turtle nesting beaches. Nothing is known about crab predation on sea turtle eggs at the time of nesting. We obtained unprecedented records of crab predation at sea turtle nests during the breeding seasons of 2017/18 and 2018/19. We analyzed through images and videos the behavior of the predatory species. Not only that, but we observed an average loss of 3 eggs per nest. The period from 0:00 to 3:00 h presented the highest risk of predation. The mortality rate in the egg stage related to neonates was 5% per nest, with an estimated predation impact of 21,600 eggs per season reproductive.


Assuntos
Tartarugas , Animais , Comportamento de Nidação , Comportamento Predatório , Reprodução , Estações do Ano
19.
Animals (Basel) ; 12(12)2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35739811

RESUMO

Two divergent genetic lineages have been described for the endangered green turtle in the Pacific Ocean, occurring sympatrically in some foraging grounds. Chile has seven known green turtle foraging grounds, hosting mainly juveniles of different lineages. Unfortunately, anthropic factors have led to the decline or disappearance of most foraging aggregations. We investigated age-class/sex structure, morphological variation, genetic diversity and structure, and health status of turtles from two mainland (Bahia Salado and Playa Chinchorro) and one insular (Easter Island) Chilean foraging grounds. Bahia Salado is composed of juveniles, and with Playa Chinchorro, exclusively harbors individuals of the north-central/eastern Pacific lineage, with Galapagos as the major genetic contributor. Conversely, Easter Island hosts juveniles and adults from both the eastern Pacific and French Polynesia. Morphological variation was found between lineages and foraging grounds, suggesting an underlying genetic component but also an environmental influence. Turtles from Easter Island, unlike Bahia Salado, exhibited injuries/alterations probably related to anthropic threats. Our findings point to establishing legal protection for mainland Chile's foraging grounds, and to ensure that the administrative plan for Easter Island's marine protected area maintains ecosystem health, turtle population viability, and related cultural and touristic activities.

20.
PeerJ ; 10: e13536, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35694388

RESUMO

Microplastics, new persistent pollutants, have recently attracted considerable attention. When present in beach sediments, microplastics may adversely affect the nesting and hatching of sea turtles on beaches. In this study, we investigate microplastic pollution at Qilianyu (northeastern Xisha Islands), the largest known nesting ground for green sea turtles (Chelonia mydas) in China. We found that the average abundance of microplastics in the beach surface sediments was 338.44 ± 315.69 thousand pieces·m-3 or 1,353.78 ± 853.68 pieces·m-2, with foam and fragments as the main microplastic type identified. The microplastic particles were categorised as small and were predominantly within the 0.05-1 mm size category. Most microplastic particles were white (71.31%). Polystyrene and polyethylene were found to be the most common forms of plastic present. Microplastic pollution was not only observed on the beach surface but also at the bottom of nests approximately 60 cm may be harmful to the incubation of sea turtle eggs. We suggest removing plastic litter, especially small pieces of plastic, on beaches to reduce the threat of microplastic pollution to marine life, including sea turtles. Furthermore, the foam used in aquaculture should be recovered and replaced before it becomes fragmented due to age. In addition, regional cooperation between stakeholders in the South China Sea should be strengthened to collectively promote the reduction and cleanup of marine litter.


Assuntos
Microplásticos , Tartarugas , Animais , Microplásticos/toxicidade , Plásticos , Monitoramento Ambiental , China
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...